Data Science (DSCI)

DSCI 501  Data Mining  (3)  

This course is about mining knowledge from data in order to gain useful insights and predictions. From theory to practice, the course investigates all stages of the knowledge discovery process, which includes data preprocessing, exploratory data analysis, prediction and discovery through regression and classification, clustering, association analysis, anomaly detection, and postprocessing.

DSCI 502  Data Mining at Scale  (3)  

A second semester of data mining introducing tools and techniques necessary for mining large scale data sources. Prerequisite:DSCI 501

DSCI 511  Data Preprocess/Visualization  (3)  

This course is an introduction to data visualization. It includes data preprocessing and focuses on specific tools and techniques necessary to visualize complex data. Data visualization topics covered include design principles, perception, color, statistical graphs, maps, trees and networks, and other topics as appropriate. Visualization tools may include JavaScript D3 library, Python, and R, and commercially available software such as Tableau, etc. The course introduces the techniques necessary to successfully implement visualization projects using the programming languages studied.

DSCI 525  Research Methods  (3)  

An introduction to basic scientific and statistical research methods when dealing with measurements of human and corporate activity. Students read and evaluate current research and translate their ideas into viable research projects. Topics include scholarly writing and presentation, descriptive research methods, quasi-experimental and experimental design, ethical issues, and analytical methods.

DSCI 595  Thesis  (1-3)  

Thesis credit may be earned for significant work toward the writing of a master’s thesis. This thesis may be used to fulfill the culminating project requirement.

DSCI 599  Practicum  (1-6)  

The practicum is an opportunity to directly experience the work of a data scientist or data analytics professional. It consists of project-based learning on a significant and contributory business objective in conjunction with practicing professionals in one of many appropriate industries. May be repeated up to 6 credits.